E\ Secure the Vibe — Security Report

Security Scan Findings Report

Generated for: https://example.com

Confidential — For intended recipient only. This report provides guidance based on automated and heuristic analysis.
Validate changes in a safe environment before production deployment.

Scan Information

URL: https://example.com
Scan ID: eb4cacbf-0f29-4149-90f9-b079¢c247b508
Date of scan: September 09, 2025 at 03:07:10

Analysis & Recommendations

Summary

The application has been found to have several security vulnerabilities that need to be
addressed. These vulnerabilities include XSS, CSRF, and file upload issues, among others. It
is essential to prioritize and fix these issues to prevent potential attacks and ensure the
security of the application.

Issues
Missing Security Headers

Explanation: The website is missing important security headers, such as Content-Security-
Policy, that help prevent XSS attacks. This makes the application vulnerable to XSS attacks,
which can lead to unauthorized access to user data and system compromise.

Fix Recommendation:

1.

2.

Step 1: Configure Next.js to include the necessary security headers in the response.
This can be done by using the next.config.js file to add custom headers.

Step 2: Use Vercel's built-in support for security headers by configuring the vercel.json
file to include the necessary headers. Possible Fix:

Page 1 of 5



Secure the Vibe — Security Report

/'l next.config.js
nmodul e. exports = {

/l... other configurations ...
async headers() {

return [

{

source: '/:path*'

headers: [

{

key: 'Content-Security-Policy',
val ue: "default-src 'self'; script-src 'self' https://cdn.exanple.com object-src 'none'"

Priority: High

CSRF Vulnerabilities

Explanation: The application has been found to have CSRF vulnerabilities, which can allow
an attacker to perform unauthorized actions on behalf of a user.
Fix Recommendation:

1. Step 1: Implement CSRF protection using a library like csurf in Next.js. This can be
done by creating a middleware function that checks for the CSRF token in incoming
requests.

2. Step 2: Configure the csurf library to use a secret key stored in an environment variable,
and set up the necessary cookies and headers. Possible Fix:

/| pages/api/csrf.js
i mport csrf from'csurf';
i mport { Next Api Request, Next Api Response } from ' next';

const csrfProtection = csrf({ cookie: true });

const handl er = async (req: NextApi Request, res: NextApi Response) => {

/l... other handler code ...
await csrfProtection(req, res);
/l... other handl er code ...

b

export default handl er;

Priority: Medium

DOM-based XSS Vulnerabilities

Explanation: The application has been found to have DOM-based XSS vulnerabilities, which
can allow an attacker to inject malicious code into the application.
Fix Recommendation:

1. Step 1: Use a library like DOMPurify to sanitize user input and prevent XSS attacks.
Page 2 of 5



Secure the Vibe — Security Report

2. Step 2: Configure the DOMPurify library to use a whitelist of allowed tags and attributes.
Possible Fix:

/'l components/Input.js
i mport DOWPurify from'donpurify';

const Input = ({ value }) =>{

const sanitizedValue = DOWPurify.sanitize(val ue, {
ALLONED TAGS: ['p', 'span'],

ALLONED ATTR: ['style'],

1)

return <div dangerouslySetlnnerHTM.={{ _ _htnl: sanitizedValue }} />;
b

export default I|nput;

Priority: High
File Upload Vulnerabilities

Explanation: The application has been found to have file upload vulnerabilities, which can
allow an attacker to upload malicious files and execute them on the server.
Fix Recommendation:

1. Step 1: Use a library like multer to handle file uploads and validate the uploaded files.
2. Step 2: Configure the multer library to use a whitelist of allowed file types and sizes.
Possible Fix:

Page 3 of 5



Secure the Vibe — Security Report

/'l pages/ api/upload.js
import multer from'nulter'
i mport { Next Api Request, Next Api Response } from'next';

const upload = multer ({

dest: './uploads/',

limts: { fileSize: 1024 * 1024 * 5}, // 5MB
fileFilter(req, file, cb) {

if ('file.originalnane. match(/\.(jpg|jpeg|png)$/)) {
return cb(new Error('Only inage files are allowed'));

}

cb(null, true);

}

1)

const handl er = async (req: NextApi Request, res: Next Api Response) => {
/1... other handler code ...
upl oad(req, res, (err) =>{

if (err) {

/l... handle error ...

} else {

/1... handl e uploaded file ...
}

1)

ik

export default handl er;

Priority: High
Path Traversal Vulnerabilities

Explanation: The application has been found to have path traversal vulnerabilities, which can
allow an attacker to access sensitive files and directories.
Fix Recommendation:

1. Step 1: Use a library like path to normalize and validate file paths.
2. Step 2: Configure the path library to use a whitelist of allowed directories and files.
Possible Fix:

Page 4 of 5



Secure the Vibe — Security Report

/1 utils/path.js
import path from'path';

const normalizePath = (filePath) => {

const nornalizedPath = path.normalize(fil ePath);
const allowedDirs = ['public', 'uploads'];

const allowedFiles = ["index.htm', "image.jpg'];

if ('allowedbDirs.includes(normalizedPath) && !allowedFiles.includes(nornalizedPath)) ({

throw new Error (' Access denied');

}

return nornalizedPat h;
b

export default nornmalizePat h;

Priority: High

Page 5 of 5



